Case Report

Multiple cerebellar abscess and pneumonia caused by Cryptococcus in an immunocompetent adult patient

Liu Xue Zheng1, Kang De Zhi2

ABSTRACT
Cerebellovical abscess was uncommon and cryptococcal cerebellar abscess and pneumonia were rarely in immunocompetent patients. We report a case of an immunocompetent adult with multiple cerebellar abscess and pneumonia caused by cryptococcus. She gave a history of headache, vomiting, chest pain and bilateral cerebellar signs. Multiple Cerebellar abscess and pneumonia were detected on magnetic resonance imaging (MRI). Our patient underwent lung biopsy, resection of the lesion and the cryptococcoma was subsequently diagnosed by histopathologic examination. The patient was treated successfully with debridements and prolonged antifungal medicine therapy.

KEY WORDS: Multiple cerebellar Abscess, Pneumonia, Cryptococcus, Immunocompetent.

INTRODUCTION
The bacteriology of a brain abscess is diverse and usually consists of a complex mixture of aerobes and anaerobes. Cryptococcus neoformans is an opportunistic pathogen, and it is widely distributed in nature, has been isolated from many fruits, soil, milk, plants, feces and manure of pigeon and other birds. It was a rare cause of brain abscesses and meningitis and was found mainly in compromised patients with cell mediated immune defects, particularly in acquired immunodeficiency syndrome or in patients receiving corticosteroid and immunopressive therapy.1

Only three cases of isolated cryptococcus cerebellar abscess in an immunocompetent patient have been reported previously in the literature. We describe such a case of multiple cerebellar abscess and pneumonia caused by cryptococcus which was diagnosed by magnetic resonance imaging (MRI) and histopathologic examination. The patient was treated successfully with debridements and prolonged antifungal medicine therapy.

CASE REPORT
An afebrile 53-year-old immunocompetent female patient was admitted to our clinic. Medical history included chronic progressive headaches for six month previously diagnosed as vascular headache before this visit, without history of fever and any congenital or acquired immune deficiency. The patient was a farmer woman, exposed to poultry markets and without diabetes and hypertension. She still gave a previous history of several non-biliary vomiting episodes. Two weeks prior to admission, she developed ataxic gait, chest pain and worsening headaches. On the day of admission, her vital signs were normal and she had no fever or clinical signs of localized infection in her body. Neurological evaluation showed signs of cerebellar dysfunction, including ataxia, wide-based gait and dysmetria.

The blood level of glucose, liver function and renal function tests were all normal. Quantitative C-reactive protein was 9mg/L (0.0-5.0mg/L). HIV serology
was negative. Her peripheral red blood cell count was $3.05 \times 10^{12}/L$ (3.5-5.0 $\times 10^{12}/L$) and the rest of the blood count findings and serum chemistry were normal. Viral serology and blood cultures were unremarkable. In lumbar puncture, cerebrospinal fluid (CSF) pressure was 280 cmH₂O, and CSF was clear. In the evaluation of CSF, white blood count, protein and glucose were within reference values. Third sputum culture revealed fungal infection.

The patient was investigated using MRI of the cranial which revealed multiple well-demarcated brain lesion in the posterior fossa region, low signal on T₁-weighted, high signal T₂-weighted and associated oedema in the surrounding parenchyma. After contrast matter administration, the lesion showed ring-type enhancement and mass effect on the fourth ventricle without hydrocephalus (Fig-1). CT scan of the brain showed multiple low signal brain lesion and high signal surrounding abscesses in the posterior fossa region, causing surrounding edema with effacement of the 4th ventricle. CT scan of the chest showed empty shadow in the upper lobe and lower lobe of right lung (Fig-2).

After admission, the patient underwent histopathologic examination of lung puncture, neurosurgical resection of the cerebellar abscess and drainage of of the cerebellar abscess from lateral posterior. Lung histopathologic examination showed interstitial fibrosis hyperplasia (yellow arrow) and many inflammatory cells infiltration (white arrow) (Fig-3 A). Cerebellar abscess histopathologic examination showed yeast-formed fungus (white arrow) among the inflammatory and necrotic tissue. The fungus was about 5 to 10 µm in diameter and had a thick gelatinous capsule. The presence of budding yeast like organisms staining with Gomori methenamine silver, results from the mucicarmine stain were consistent with cryptococcal infection (Fig-3 B). Meanwhile, according to drug sensitivity test the patient was treated with fluconazole over 30 days. The headache and cerebellar signs gradually improved. MRI scan of the cranial showed a decrease in the size of the lesion. Her medication was changed to oral fluconazole which was continued for 12 week. The patient’s condition improved, and her headache, ataxia, gait disturbance and vertigo completely resolved.

DISCUSSION

In the case, the first, we suspected she was brain metastases, and cerebral abscesses was not considered because of absence of clear indicators of infection in clinical and laboratory, the second, we considered she was tuberculous cerebral abscess because of empty shadow in CT scan of the chest. Surprisingly, histopathologic examination of lung biopsy and sputum culture result failed to confirm malignancy.
or Tuberculoc cerebral abscess. Nonetheless, the re-
section and drainage of the cerebellar abscess were
done because of the high Intracranial pressure in pa-
patients and foramen magnum herniation prevention,
and also histological tissue examination was neces-

dary for definitive microorganisms. Malignancy and
tuberculosis were ruled out.

Cryptococcosis was an infectious disease caused
by the yeast C. neoformans. This microorganism was
traditionally described as a unique species: C. neoformans that included two pathogenic varieties: C. neoformans var. neoformans and C. neoformans var. gattii. Important differences between the two vari-
eties have recently raised C. neoformans var. gattii to
species status as cryptococcus gattii. The CNS was
the second most common site of infection for
cryptococcosis after the lungs, but was the most com-
mon site of disease manifestation because of the strong
neurotropic endency of cryptococci. Cryptococcosis
initial infection was thought to be acquired by inhala-
tion of an encapsulated yeast like fungus, crypto-
coccus neoformans, and after exposition to environ-
mental sources. Which is a ubiquitous microorgan-

isn found in mammal and bird feces, particularly pi-
geon droppings. Lung lesions are characterized by
intense granulomatous inflammation, causing chest
pain in 40% of patients and coughing in 20%, while
cryptococcal pneumonia was frequently overlooked
due to lack of specific signs and symptoms. Chest X-
ray and CT scan often show one or more well-circum-
scribed lesions with possible cavitation, accompanied
by pleural effusion or hilar lymphadenopathy. Cen-
tral nervous system (CNS) cryptococcosis is believed
to result from hematogenous dissemination from the
lungs.

Cryptoccus cerebellar abscess was one of the rare
forms of central nervous system infections. It is usu-
ally associated with an immunocompromised state,
particularly in acquired immunodeficiency syndrome
or in patients receiving corticosteroid and
immunopressive therapy. To our knowledge, only 3
cases of cryptococcoma cerebellar abscess have been
previously reported in the immunocompetent state:
two adult (Kanaly et al, Narongwit Nakwan et al, and a child (Gologorsky et al.). Moreover, multiple
cerebellar abscess and pneumoniae caused by
cryptococcus is first reported.

The clinical manifestations of cryptococcosis cer-
ebellar abscess were highly variable, relating in part
to underlying medical conditions (such as diabetes,
sarcoidosis, or glucocorticoid use) and abscess con-
ditions (such as number, size, location, and mass ef-
facts). Headache, vomiting, altered mental status and

signs of cerebellar dysfunction were the most com-
mon presentation. Speed and Dunt reported the du-
ration from initial presentation to diagnosis was
longer in healthier host than in immunosuppressed hosts. However, patients may also present with mini-
mal or nonspecific symptoms. Fever and nuchal ri-
didity are characteristically absent, as was the case in
our patient.

There are no definitive guidelines for the treatment
of cryptococccus infections in an immunocompetent
adult, but treatment for CNS cryptococcal disease was
common in patients with HIV infection, according to
HIV-patient regimen was recommended. Treatment
cerebellar abscess required a combination of anti-
fungal, surgical intervention and eradication of pri-
mary infected foci. Surgical intervention depends on
abscess of number, size, location, and mass effects.
Since our patient had no evidence of immunosuppres-
sion, it seems appropriate to maintain the treatment of surgery and antifungal until symptom relief and
improvement.

REFERENCES

1. Suzuk S, Yetener V, Ergungor F, Balaban N. Cerebellar
abcess caused by Shewanella putrefaciens Scand. J Infect
2. Colom MF, Frases S, Ferrer C, Jover A, Andreu M, Reus S,
et al. First case of human cryptococcosis due to cryptococ-
cus neoformans var. gattii in Spain. J Clin Microbiol
to conserve the name Cryptococcus gattii against C.
hondurianus and C. baccillisporus (Basidiomycota,
Hymenomycetes, Tremellomyc- etidae). Taxon
4. Gologorsky Y, DeLaMora P, Souweidane MM, Greenfield
JP. Cerebellar cryptococcoma in an immunocompetent
child, Case report. J Neurosurg 2007;107(Suppl 4):314-
317.
5. Ho TL, Lee HJ, Lee KW, Chen WL. Diffusion-Weighted
and Conventional Magnetic Resonance Imaging in Cere-
6. Kanaly CW, Selznick LA, Cummings TJ, Adamson DC.
Cerebellar cryptococcoma in a patient with undiagnosed
N. Cerebellar cryptococcoma in an immunocompetent
adult patient. Southeast Asian J Trop Med Public Health
8. Speed B, Dunt D. Clinical and host differences between
infections with the two varieties of Cryptococcus
9. Saag MS, Graybill RJ, Larsen RA, Pappas PG, Perfect JR,
Powderly WG, et al. Practice guidelines for the manage-
ment of cryptococcal disease. Clin Infect Dis
10. Lu CH, Chang WN, Lin YC, Tsai NW, Liliang PC, Su TM,
et al. Bacterial brain abscess: Microbiological features, epide-
miological trends and therapeutic outcomes. QJM